Nota aplikacyjna – Zmniejszenie częstotliwości wyłączeń falownika z powodu wysokiego napięcia

Historia wersji

Wersja 1.0, lipiec 2023 r. – pierwsze wydanie.

Spis treści

Omówienie	1
Autokonsumpcja	2
Montaż licznika energii	2
Instalowanie kontrolerów obciążenia i urządzeń inteligentnych	2
Instalowanie magazynów energii	2
Podsumowanie	2
Zapewnienie optymalnej wydajności falownika	
Dostosowanie ustawień falownika przez właściciela instalacji	3
Dostosowanie ustawień falownika przez Instalatora	3
Wykonywanie pomiarów na instalacji	9
Protokół pomiaru instalacji PV	9
Przygotowanie druku zgłoszeniowego do OSD	
Lista alarmów	
Tryb Q(U)	
Tryb P(U)	
Wykresy	
Pomiary	

Omówienie

Celem niniejszego dokumentu jest przedstawienie propozycji rozwiązań problemu problemu zbyt wysokiego napięcia w sieci, który skutkuje samoczynnym wyłączaniem się falowników. To z kolei skutkuje zmniejszeniem produkcji w całym okresie eksploatacji instalacji.

Wdrażając rozwiązania tego problemu, właściciele obiektów i instalatorzy mogą być pewni, że większość wyłączeń falowników w przyszłości będzie raczej związana z siecią elektroenergetyczyną, nie zaś z problemami w sieci wewnętrznej obiektu.

Pierwszym obszarem, na który należy zwrócić uwagę przy próbie rozwiązania problemu, jest poziom autokonsumpcji w instalacji. Następnie należy zadbać o zapewnienie najwyższej możliwej jakości sieci w instalacji fotowoltaicznej. Po odpowiednim uwzględnieniu tych dwóch obszarów możemy zająć się dalszymi rozwiązaniami na poziomie sieci elektroenergetycznej.

Firma SolarEdge zaleca rozpoczęcie od początku i przejście przez każde rozwiązanie krok po kroku. Mimo że jesteśmy przekonani, że te rozwiązania znacznie zmniejszają częstotliwość wyłączania się falownika, nie możemy zagwarantować ich skuteczności w każdej sytuacji.

Autokonsumpcja

Autokonsumpcja w instalacji odnosi się do wykorzystania energii generowanej przez sieć fotowoltaiczną do zasilania obciążeń elektrycznych bez korzystania z energii z sieci. Oznacza to, że energia wyprodukowana przez sieć fotowoltaiczną jest zużywana na miejscu, a nie dostarczana do sieci energetycznej. Instalatorzy i właściciele instalacji mogą skorzystać z dowolnej lub wszystkich poniższych opcji w celu zwiększenia autokonsumpcji.

Montaż licznika energii

Montaż licznika energii pozwala na dokładną diagnozę częstości występowania i dokładnej przyczyny zdarzeń zbyt wysokiego napięcia i jego prawdopodobnej przyczyny. Liczniki energii zapewniają wgląd w wymianę energii między instalacją a siecią, a korzystając z tej wiedzy, właściciele i instalatorzy mogą zwiększyć autokonsumpcję w instalacji. Licznik umożliwia właścicielom obiektów śledzenie i kontrolę zużycia w czasie rzeczywistym, umożliwiając im skuteczną walkę z problemem zbyt wysokiego napięcia w sieci. Pozwala szybko identyfikować problemy i podejmować odpowiednie kroki.

Licznik jest podstawą wszelkich rozwiązań polegających na wykorzystaniu nadmiaru energii z instalacji zwiększając tym samym wielkość autokonsumpcji.

Instalowanie kontrolerów obciążenia i urządzeń inteligentnych

Innym rozwiązaniem zwiększającym zużycie własne jest instalacja urządzeń inteligentnych, takich jak kontrolery obciążenia ze stycznikami, inteligentne przełączniki, inteligentne gniazda czy sterownik CWU. Urządzenia te umożliwiają kontrolę zużycia energii w czasie rzeczywistym. Można na przykład użyć stycznika do automatycznego wyłączania nieużywanych urządzeń. Innym przypadkiem jest sterowanie pompą ciepła w sposób umożliwiający jej pracę w oparciu o ilość nadwyżki energii z instalacji PV.

Właściciele instalacji mogą korzystać z inteligentnych przełączników do sterowania i włączania obciążeń, gdy występuje nadwyżka produkcji z instalacji fotowoltaicznej, zwiększając w ten sposób autokonsumpcję w obiekcie. Problem ograniczonej przestrzeni w rozdzielnicy można rozwiązać poprzez instalowanie inteligentnych gniazdek dla określonych obciążeń.

Instalowanie magazynów energii

Innym rozwiązaniem zwiększającym autokonsumpcję jest dodawanie do instalacji magazynów energii. W magazynach energii przechowywany jest nadmiar energii, który jest udostępniany w razie potrzeby. Magazyny można wykorzystywać na wiele różnych sposobów, które przyczyniają się do skrócenia czasu zwrotu inwestycji. Dzięki magazynowi energii użytkownik jest lepiej przygotowany do płacenia stawki godzinowej za energię elektryczną i zapewnia swojej instalacji możliwość zasilania awaryjnego w przypadku przerw w dostępności zasilania sieciowego.

Podsumowanie

Wymienione powyżej rozwiązania są dostępne dla właścicieli obiektów, a ponieważ wyższe napięcie występuje podczas odprowadzania energii do sieci, rozwiązania oparte na zwiększeniu autokonsumpcji bezpośrednio poprawiają wydajność falownika.

Właściciele instalacji mogą skontaktować się z instalatorem w celu uzyskania pomocy w doborze najlepszego rozwiązania dla ich instalacji.

Zapewnienie optymalnej wydajności falownika

Treść poniższych punktów służy pomocy w zapewnieniu optymalnego działania falowników w instalacji. Są procedury, które może wykonać właściciel instalacji i takie, które może wykonać instalator.

Dostosowanie ustawień falownika przez właściciela instalacji

Właściciele instalacji mogą sprawdzić podstawowe ustawienia falownika za pośrednictwem Platfromy Monitoringu w następujący sposób:

Na stronie głównej instalacji fotowoltaicznej:

- 1. Wybierz Układ.
- 2. Kliknij prawym przyciskiem myszy falownik i wybierz Informacje.

Wyświetlane są szczegółowe informacje o falowniku, takie jak numer seryjny, model i napięcie łańcucha prądu stałego.

3. Sprawdź Kod kraju/Nazwa kraju:

Kod kraju/Nazwa kraju	Opis
37/Polska	Tryb Q(U) dymyślnie wyłączony
195/Polska NC RfG	Tryb Q(U) domyślnie włączony

Obowiązująca Instrukcja Ruchu i Eksploatacji Sieci Dystrybucyjnej (IRiESD) zawiera wartości nastaw falownika zgodnie z dyrektywą NC RfG.

Prawidłowe ustawienie to Polska NC RfG.

Zmiana kodu kraju jest wyłącznie możliwa do ustawienia w miejscu zainstalowania urządzenia sterującego tj. falownika poprzez aplikację SetApp. Tylko instalator ma dostęp do nastaw w falowniku co zapewnienia ochronę przed nieuprawnioną ingerencją w ustawienia nastaw zabezpieczeń oraz innych nastaw. Ustawienie kodu poświadcza się na wniosku mikroinstalacji zgodnie z obowiązującymi przepisami prawa.

Dostosowanie ustawień falownika przez Instalatora

Poniższe czynności może wykonać wyłącznie certyfikowany instalator przy użyciu narzędzi dostarczonych przez SolarEdge, takich jak Platforma Monitoringu lub SetApp.

Tryb Q(U)

Tryb Q(U) można wykorzystać do sterowania wyjściową mocą bierną w funkcji napięcia. Jeśli napięcie sieciowe jest zbyt wysokie, tryb Q(U) zmniejsza moc czynną falownika i zwiększa moc bierną, aby zmniejszyć ilość energii wysyłanej do sieci. Sterowanie w tym trybie odbywa się według krzywych określonych w IRiESD.

Instrukcja IRiESD zastrzega, że tryb Q(U) jest konfigurowalny w celu dostosowania pracy mikroinstalacji do warunków napięciowych w miejscu przyłączenia. Jego ewentualna zmiana wymaga uzgodnienia pomiędzy OSD a właścicielem mikroinstalacji.

Aby ustawić parametry trybu Q(U) w aplikacji SetApp:

1. Upewnij się, że ustawiony w falowniku Kod kraju/Nazwa kraju jest prawidłowy i zgodny ze zgłoszeniem do OSD.

Możesz to zrobić lokalnie w aplikacji SetApp lub zdalnie w Platformie Monitoringu, jak opisano powyżej w punkcie *Dostosowanie ustawie*ń falownika przez właściciela instalacji.

2. Na ekranie Przekazanie do eksploatacji, wybierz Sterowanie mocą.

	Przekazanie do eksploatacji		
۲	Kraj i język	>	
Ø	Parowanie	>	
ah	Monitorowanie komunikacji	>	
0	Interfejsy komunikacji	>	
¢	Sterowanie mocą	>	
贲	Nastawy układu zabezpieczeń	>	
Ô	Grupowe przekazanie do eksploatacji	>	
¢	Manager urządzeń	>	
G	Opcje serwisowe	>	
(j)	Informacje	>	
0	Status	>	

3. Na ekranie **Sterowanie mocą**, wybierz **Moc bierna**.

Sterowanie mocą		
Sterowanie nastawami	Włączono	>
Sterowanie na przyłączu		>
Interfejs redukcji mocy (analogowo)	Wylączono	>
Moc bierna	Q(U)+Q(P)	>
Moc czynna		>
Nastawy dla ponownego załączenia		>
Zaawansowane		>
Alternatywne źródło energii	Generator	>
Załaduj domyślne		

4. Na ekranie **Moc bierna**, wybierz **Q(U)**.

Moc bierna		
Tryb	Q(U)+Q(P)	>
CosPhi	1	>
CosPhi(P)		>
Q	0	>
Q(U)		>
Q(P)		>
Un (napięcie referencyjne sieci)	230 V	>

5. Na ekranie Q(U) ustaw parametry, które chcesz zmienić a następnie ustaw Q(U)+Q(P) w pozycji Tryb.

	Q(U)	
P#	U%	Q%
P0	50	-43.6
P1	92	-43.6
P2	94	0
P3	106	0
P4	108	43.6
P5	120	43.6

6. Monitoruj wielkość wytwarzanej energii przez instalację przez kilka dni, aby sprawdzić, czy problem nadal występuje.

Tryb P(U)

Tryb P(U) umożliwia sterowanie mocą czynną w funkcji napięcia. Jest to dodatkowa opcja do wypróbowania, gdy włączenie trybu Q(U) nie daje pożądanych rezultatów. Jeśli napięcie sieciowe jest zbyt wysokie, tryb P(U) obniża moc czynną falownika w odniesieniu do napięcia, aby zmniejszyć ilość mocy wysyłanej do sieci.

Zmiana parametrów w tym trybie wpływa bezpośrednio na wytwarzanie energii przez instalację. Istotne jest ustawienie indywidualnych parametrów pracy każdej mikroinstalacji.

Proponujemy, aby indywidualnie dla każdej instalacji, ustalić teoretyczne trzy scenariusze nastaw trybu w celu sprawdzenia prawidłowej pracy systemu po ustawieniu każdego z nich, w celu wyboru optymalnych wartości. Poniżej przykładowe nastawy do wpisania wraz z wykresami obrazującymi moment ich zadziałania w zależności od wysokości napięcia

Ustawienie optymalne

Ustawienie średnie

P#	U%	Usiec	P(U)	Regulacia P(U)
PO	10	23,0	1	1,2
P1	100	230,0	1	0,8
P2	108	248,4	1	0,6
Р3	109	250,7	0,8	
Ρ4	112	257,6	0,5	230,0 240,0 250,0 260,0 270,0 280,0
P5	120	276,0	0,3	P(U)

Ustawienie agresywne

Aby aktywować i skonfigurować parametry trybu P(U) w aplikacji SetApp:

1. Na ekranie Przekazanie do eksploatacji, wybierz Sterowanie mocą.

	Przekazanie do eksploatacji	
۲	Kraj i język	>
Ø	Parowanie	>
ah	Monitorowanie komunikacji	>
0	Interfejsy komunikacji	>
¢	Sterowanie mocą	>
贲	Nastawy układu zabezpieczeń	>
\$	Grupowe przekazanie do eksploatacji	>
¢	Manager urządzeż	>
E.	Opcje serwisowe	>
(i)	Informacje	>
0	Status	>

2. Na ekranie Sterowanie mocą, wybierz Moc czynna.

Sterowanie na przyłączu		>
Interfejs redukcji mocy (analogowo)	Wylączono	>
Moc bierna	Q(U)+Q(P)	>
Moc czynna		>
Nastawy dla ponownego załączenia		>
Zaawansowane		>
Alternatywne źródło energii	Generator	>
Załaduj domyślne		

Nota aplikacyjna – Zmniejszenie częstotliwości wyłączeń falownika z powodu wysokiego napięcia

3. Na ekranie **Moc czynna** czynna wybierz **P(V)**.

÷	SDIAR 2000 SN 7E0D0916-AA		-
	Moc czynna		
Limit mocy falownika		100 %	>
Limit prądu falownika		39.99 A	>
Gradient po ponownym załączeniu		Włączono	;
Czas po ponownym załączeniu		600000 ms	;
P(f)			;
P(V)			;
Oradiant region		0 %	,

4. Na ekranie **P(V)** ustaw parametry, które chcesz zmienić.

	P(V)	
P#	V%	P%
PO	10	100
P1	100	100
P2	107	100
P3	110	100
P4	112	100
P5	120	100

Jeśli problem będzie się powtarzał, sugerujemy wyłączenie falownika na jeden dzień. Następnego dnia wygeneruj wykres napięcia i porównaj go z poprzednimi. Aby uzyskać dokładne porównanie, podczas generowania wykresów upewnij się, że warunki pogodowe są takie same.

Przy wyłączonym falowniku możliwe są dwa scenariusze:

Napięcia powyżej 253 V

Nie włączaj instalacji. Niezwłocznie zgłoś usterkę w sieci do OSD (zwykle na numer 991).

Prawidłowe napięcia

Kolejnym krokiem jest wykonanie pomiarów sieci elektrycznej w obiekcie. Sugerujemy skorzystanie z usług wykwalifikowanego i doświadczonego elektryka lub instalatora w celu wykonania pomiarów i prawidłowej ich interpretacji.

Wykonywanie pomiarów na instalacji

Poniższy protokół pomiarowy ma na celu identyfikację i eliminację potencjalnych problemów w sieci wewnętrznej obiektu, które mogłyby przyczynić się do stanu wysokiego napięcia. Pomiary są również podstawą do podjęcia decyzji o złożeniu skargi do operatora sieci.

Oprócz wykonania pomiarów sugerujemy sprawdzenie fizycznej instalacji elektrycznej w celu wykluczenia wszelkich innych możliwych źródeł problemów przyczyniających się do występowania wysokiego napięcia. Wizyta na miejscu instalacji umożliwia przeprowadzenie konserwacji instalacji elektrycznej, co może pomóc w zidentyfikowaniu potencjalnych przyczyn problemu.

Jeżeli po wykonaniu czynności kontrolno-pomiarowych problem nie zostanie rozwiązany, należy przystąpić do przygotowania niezbędnych informacji dla OSD o stanie faktycznym instalacji wewnątrz obiektu.

Poniżej przykładowy protokół pomiaru instalacji.

Protokół pomiaru instalacji PV

Data	
Wykonawca pomiarów	
Nazwa instalacji	
Adres	
Właściciel	
Administrator instalacji	

Falownik		Instalacja			
Model	Numer seryjny	Nazwa	Мос		
Ustawiona norma sieciowa					

Pomiary AC

Pomiar	WLZ		Główna tablica rozdzielcza		Zaciski AC falownika		
napięcia	Produkcja	Brak produkcji	Produkcja	Brak produkcji	Produkcja	Brak produkcji	
L1-N							V_{AC}
L2-N							V_{AC}
L3-N							V_{AC}
L1-L2							V_{AC}
L1-L3							V_{AC}
L2-L3							V_{AC}
L1-PE							V_{AC}
L2-PE							V_{AC}
L3-PE							V_{AC}
N-PE							V_{AC}

Pomiar impedancji pętli zwarcia

.....

IPZ						
	WLZ	Rozdzielnia główna	Zaciski AC falownika			
L1-N				Ω		
L2-N				Ω		
L3-N				Ω		
L1-L2				Ω		
L1-L3				Ω		
L2-L3				Ω		
L1-PE				Ω		
L2-PE				Ω		
L3-PE				Ω		

Notatki:....

Data:

Podpis:

Przygotowanie druku zgłoszeniowego do OSD

Sugerowana procedura reklamacyjna u operatora sieci polega na zgłoszeniu usterki za wysokiego napięcia w sposób akceptowany przez OSD.

W przypadku większości operatorów sieci obowiązkowe jest powiadomienie ich drogą telefoniczną lub pisemną (przez e-mail/formularz kontaktowy).

Podczas wypełniania wniosku sugerujemy, aby opis reklamacji zawierał informacje wymienione poniżej. Opisanie i rozwinięcie tych punktów w zgłoszeniu, podając rzeczywisty stan na instalacji – wraz z wdrożonymi rozwiązaniami opisanymi w powyższym piśmie, stanowić będzie zasadniczą treść zgłoszenia, ułatwiając jego stworzenie.

Lista alarmów

Dostarczenie zrzutu ekranu z Platformy Monitoringu, który wskazuje, jak istotny jest problem dla funkcjonowania instalacji.

	= () 0 Wh 2	1	=∽ 9 0 Wh			
Szczegóły dot	tyczące Inverter 1				×	
Dane system	nu Bieżąca operacja	Ekran urządzenia Błę	dy			
Ostatnie odś	Ostatnie odświeżanie: 7/27/2023, 11:32:27 AM					
Kod	Opis	Ostatnie wystąpienie	ILOŚĆ			
101	AC Voltage Too High (Line 3)	07.07.2023 8:45	518	=		
121	Isolation Fault	05.07.2023 4:28	2	:=		
89	Passive anti islanding	07.07.2023 8:28	2	:=		

	=∽ 0 Wh 2		1	ראיי ס שא		
Szczegóły doty	czące Inverter 1					
Dane systemu	Bieżąca operacja	Ekran urządzer	nia Błę	dy		
Ostatnie odświ	ieżanie: 7/27/2023, 11:33:	09 AM				ODŚWIEŻ
Kod	Opis	Ostatnie wys	itapienie	ILOŚĆ		
101	AC Voltage Too High (Line 3)	07.07.2023 8	:45	518	:=	
121	Isolation Fault	05.07.2023 4	:28	2	:=	
30	Passive anti islanding	07.07.2023 8	:28	2	:=	
119	INIT	07.07.2023 4	:24	10	:=	
Kod błędu:	101		07.07.	2023 8:45		
AC voltage 10	o High (Line 3)		07.07.	2023 8:16		
			07.07.	2023 8:00		
			07.07.	2023 7:44		
			07.07.	2023 7:27		
			07.07	2023 7-11		

Tryb Q(U)

Potwierdzenie ustawienia trybu Q(U) w falowniku. Dodanie zrzutu ekranu z aplikacji SetApp.

				Q(U)	
Moc bierna			P#	U%	Q%
Тгуb	Q(U)+Q(P)	>	P0	50	-43.6
CosPhi	1	>	P1	92	-43.6
CosPhi(P)		>	20		
Q	0	>	PZ	94	U
Q(J)		,	P3	106	0
Q(P)		>	P4	108	43.6
Un (napięcie referencyjne sieci)	230 V	>	P5	120	43.6

Tryb P(U)

Potwierdzenie, że w falowniku został ustawiony tryb P(U) wraz z podaniem wartości nastaw. Dodanie zrzutu ekranu z aplikacji SetApp.

Wykresy

Dostarczenie zrzutów ekranów z Platformy Monitoringu dotyczących wykresów napięcia i mocy czynnej, potwierdzających problem.

Pomiary

Dostarczenie protokołu z wykonanych pomiarów (*Wykonywanie pomiarów na instalacji*) oraz kopię upoważnienia do wykonywania pomiarów elektrycznych.